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Abstract
We demonstrate the Einstein–Podolsky–Rosen (EPR) correlations in the
Gaussian trial wavefunctional widely used in the Schrödinger representation
of the self-interacting complex scalar fields (CSF). This demonstration is based
on the explicit eigenstates ‖ξ〉, which possess the precise EPR entanglement and
constitute a complete and orthonormal representation, of CSF φ and φ† in the
Fock space. To show the entanglement of the Gaussian trial wavefunctional, we
evaluate in the 〈ξ‖-representation its ‘entangled’ Wigner functional resembling
the Wigner function of the two-mode squeezed vacuum state, whose quantum
entanglement is well known.

PACS numbers: 0365B, 1110

In 1935, Einstein, Podolsky and Rosen (EPR) published a famous paper [1] arguing
the incompleteness of quantum mechanics. Their paper has started a lasting debate
about the completeness and the meaning of local realities in quantum mechanics. The
EPR paper introduced two striking aspects of quantum mechanics into physics: quantum
entanglement [2] and quantum nonlocality (quantum nonseparability), though they found them
to be unbelievable. The relationship between quantum entanglement and quantum nonlocality
has then been a source of great theoretical interest and plays an essential role in the modern
understanding of quantum phenomena. Based on Bell’s work [3] and experiments [4] inspired
by his work, the EPR entanglement now becomes a peculiar but basic feature of quantum
mechanics and is the source of the weirdness of quantum mechanics [5]. In the burgeoning
field of quantum information theory, the EPR entanglement is also of practical importance. As
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a valuable resource, the EPR entangled states can be exploited to perform classically impossible
tasks, such as quantum teleportation [6, 7] and quantum computation [8].

However, as far as we know, little attention has been paid to the EPR entanglement in the
context of quantum field theories. In this paper we aim to demonstrate the EPR correlations
in the Gaussian trial wavefunctional [9, 10], which was widely used in the Schrödinger
representation of the nonlinear model field theories, such as the λφ4-model for complex scalar
fields (CSF). The Schrödinger representation in quantum field theories [11,12] is an attractive
setting in the research of many structural features of various quantum field theories and the
nonperturbative calculations in strong-interaction theory. It is a field-theoretical generalization
of the Schrödinger equation in quantum mechanics. Thus the experience gained in quantum
mechanics will help us to research and develop quantum field theories in an intuitive way.
For instance, the (nonperturbative) Gaussian effective potential approach [9, 10] used in this
context is analogous to the variational approach in ordinary quantum mechanics. Meanwhile
the Schrödinger representation has been proved to be rather tractable in the kinematical
calculations [13]. It also has various usages in many other topics, such as the topological
effects [14] and confinement [15] in gauge theories, the collective phenomena [16, 17] and
quantization of (1 + 1)-dimensional gravity [18].

The Lagrangian density for the CSF with self-interaction is

L(x) = −∂µφ
†∂µφ − m2φ†φ − U(φ†φ). (1)

The Hamiltonian operator

H =
∫

dx3 [�†� + (∇φ†) · (∇φ) + m2φ†φ + U(φ†φ)]. (2)

In quantum theory of the CSF, φ and φ† are two independent fields. Henceforth we work in the
Schrödinger picture, for example, φ(x) ≡ φ(x, t = 0). The following commutation relations
are nonvanishing:

[φ(x),�(x ′)] = iδ(x − x′)
[φ†(x),�†(x ′)] = iδ(x − x′)

(3)

where the conjugate fields �(x) = ∂tφ
†(x) and �†(x) = ∂tφ(x). Choosing U(φ†φ) =

1
6λ0(φ

†φ)2, one obtains the λφ4-model for the CSF. Note that this model is important in the
Goldstone–Higgs mechanism [19, 20], a cornerstone of the standard model.

Obviously, in the Schrödinger representation for the quantized φ† and φ, one needs
a complete basis ‖ξ〉 in which the field operators φ†(x) and φ(x) are diagonal; the state
vectors ‖�(t)〉 of the CSF in the Schrödinger representation read 〈ξ‖�(t)〉 ≡ �[ξ, t]. As
comparison, recall that in ordinary quantum mechanics, the coordinate operator Q is diagonal
in the coordinate basis |q〉 and the wavefunctions ψ(q, t) are the inner products between the
state vectors |ψ(t)〉 and |q〉. Apparently, the 〈ξ‖-representation is a necessary kinematical
framework for the Schrödinger representation of the CSF. The explicit construction of the
〈ξ‖-representation is lacking from the literature, at least to our knowledge.

Very recently, the explicit common eigenstates ‖ξ〉 of φ(x) and φ†(x) were constructed
in the Fock space [21]. Here we briefly review the construction of ‖ξ〉. The CSF can be
canonically quantized and divided into a positive frequency part and a negative frequency part
as [22]

φ(x, t) = φ+ + φ− φ†(x, t) = φ†
+ + φ

†
− (4)

where
φ+ =

∑
p

apfp(x, t) = (φ
†
−)†

φ− =
∑

p

b†
pf

∗
p (x, t) = (φ†

+)
† (5)
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with [ap, a
†
p′ ] = [bp, b

†
p′ ] = δpp′ , fp(x, t) = (2Vωp)

−1/2ei(p·x−ωpt), ωp =
√
m2 + p2 and V

being the normalization volume. For the self-interacting fields m is an arbitrary real mass
parameter [22], and one may choose m to be the physical mass mphys. Since φ(x) and φ†(x)

are commutative and independent of each other, one can construct their common eigenstates,
which in the Fock space are given by

‖ξ〉 =
(

det
G

2

)− 1
2

exp

{ ∫ ∫
d3x d3x ′ G−1(x − x′)[−ξ ∗(x)ξ(x′) − 2φ†

−(x)φ−(x ′)

+2ξ(x)φ
†
−(x ′) + 2ξ ∗(x)φ−(x ′)]

}
‖00〉. (6)

Here the vacuum state of the CSF is annihilated by both ap and b−p:

ap|00〉p = b−p|00〉p = 0 ‖00〉 =
∏
p

|00〉p (7)

and

G−1(x − x′) =
∑

p

ωp

V
eip·(x−x′) (8)

is the inverse of G(x − x′) = ∑
p

eip·(x−x′)
ωpV

due to the following fact:
∫

d3y G(x − y)G−1(y − x′) = δ(x − x′). (9)

It can be proved that [21]

φ(x)‖ξ〉 = ξ(x)‖ξ〉 φ†(x)‖ξ〉 = ξ ∗(x)‖ξ〉. (10)

Therefore ‖ξ〉 are indeed the common eigenstates of φ and φ†. Physically, the field
‘configurations’ ξ(x) (ξ ∗(x)), being the eigenvalues of φ(x) (φ†(x)), should be smooth and
complex functions of the space coordinates x. Moreover, ‖ξ〉 satisfy the completeness and
orthonormality relations:∫ [

d2ξ

π

]
‖ξ〉〈ξ‖ = 1 (11)

〈ξ ′ ‖ ξ〉 = [π ]δ(2)[ξ ′ − ξ ]. (12)

Here the integral in equation (11) is of course the functional one [12], and δ(2)[ξ = ξ1 + iξ2] =
δ[ξ1]δ[ξ2] is the functional δ-function of complex arguments ξ . Equations (11) and (12) imply
that ‖ξ〉 form a complete and orthonormal representation, the 〈ξ‖-representation. The common
eigenvectors ‖η〉 of �(x) and �†(x) can be similarly obtained. The inner products between
‖ξ〉 and ‖η〉 are

〈ξ‖η〉 = ei
∫

d3x [ξ∗(x)η∗(x)+ξ(x)η(x)] = (〈η‖ξ〉)∗. (13)

This is consistent with the fact that in the 〈ξ‖-representation,

�(x) = −i
δ

δξ(x)
�†(x) = −i

δ

δξ ∗(x)
(14)

and

〈ξ‖�(x)‖η〉 = −i
δ

δξ(x)
〈ξ‖η〉 = η(x)〈ξ‖η〉

〈ξ‖�†(x)‖η〉 = −i
δ

δξ ∗(x)
〈ξ‖η〉 = η∗(x)〈ξ‖η〉.

(15)
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Remarkably, ‖ξ〉 possess the precise EPR entanglement. In EPR’s original argument, they
introduced the EPR states, the common eigenstates |η〉 of the relative position Q1 − Q2 and
the total momentum P1 +P2 of two particles [1]. Their explicit forms in two-mode Fock space
were given only recently [23]. Another set of the EPR states, the common eigenstates |ξ〉 of
compatible operators (Q1 +Q2, P1 −P2), can also be explicitly constructed in two-mode Fock
space [23]:

|ξ〉 = e− 1
2 |ξ |2+ξa†

1 +ξ∗a†
2−a

†
1a

†
2 |00〉 (16)

which describe a perfectly correlated two-particle system. Here [aj , a
†
k ] = δjk , aj + a

†
j =√

2Qj , aj − a
†
j = i

√
2Pj (j = 1, 2) and |00〉 is the two-mode vacuum state. In fact, ‖ξ〉

are the field-theoretical generalization of the EPR entangled states |ξ〉. Using the Fourier
transformation ξ(x) = 1√

V

∑
p ξpeip·x, ‖ξ〉 can be rewritten in the momentum space as

‖ξ〉 =
∏
p

√
2ωp exp

(
−ωp|ξp|2 +

√
2ωpξpa

†
p +

√
2ωpξ

∗
pb−p† − a†

pb
†
−p

)
‖00〉. (17)

The simultaneous appearance of both a†
p and b

†
−p originates from the conservation of

momentum.
It is obvious that the p-mode component of ‖ξ〉 in equation (17) is equivalent to the

EPR entangled states |ξ〉 defined in equation (16) and exhibits the entanglement between
the positively and negatively charged quanta of the CSF. Therefore the newly constructed
eigenstates ‖ξ〉 are the field-theoretical generalization of |ξ〉. In this sense one can call ‖ξ〉 the
entangled eigenstates of the CSF. It is worthwhile to point out that the entangled eigenstates
in equation (6) or (17) are compatible with the superselection rule [24]. The ‖ξ〉 states are
obtained by both a†

p and b
†
−p acting on the vacuum state (see equation (17)). The two operators

(a†
p and b

†
−p) create the positively and negatively charged quanta simultaneously from the

vacuum, thus ensuring the conservation law of charge.
The 〈ξ‖-representation has an immediate application to the Schrödinger representation in

the nonlinear model for the CSF under study. Now the Schrödinger representation is realized
in a Hilbert space, a linear space of wavefunctionals �[ξ, t] = 〈ξ‖�(t)〉, where the argument
runs over all smooth field configurations ξ(x) and the time-independent field operators φ(x)

and φ†(x) are diagonal:

〈ξ‖φ(x)‖�(t)〉 ≡ φ(x)�[ξ, t] = ξ(x)�[ξ, t]
〈ξ‖φ†(x)‖�(t)〉 ≡ φ†(x)�[ξ, t] = ξ ∗(x)�[ξ, t]

(18)

as is evident from equation (10). The corresponding conjugate field operators become

�(x)�[ξ, t] = −i
δ

δξ(x)
�[ξ, t]

�†(x)�[ξ, t] = −i
δ

δξ ∗(x)
�[ξ, t]

(19)

as can be seen from equation (14). In this way, the commutation relations (3) are fulfilled, and
the Hamiltonian (2) can then be written in the Schrödinger representation as

H =
∫

d3x

[
− δ2

δξ ∗δξ
+ |∇ξ |2 + m2|ξ |2 + U(|ξ |2)

]
. (20)

The Schrödinger equation turns out to be

i
∂

∂t
�[ξ, t] = H�[ξ, t] (21)
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which takes the form of a functional partial differential equation, similar to the conventional
Schrödinger equation in quantum mechanics.

Since ‖ξ〉 are precisely the field EPR entangled states, the 〈ξ‖-representation is useful in
revealing the EPR entanglement for a physical field state (note that ‖ξ〉 are normalized to a
δ-functional and thus unphysical). To show this, we make the following ansatz for the field
state (the variational vacuum state):

�[ξ,", F ] = NF exp

{
− 1

2

∫ ∫
d3x d3y [ξ ∗(x) − " ∗(x)]F(x − y)[ξ(y) − "(y)]

}

= 〈ξ‖�[",F ]〉 (22)

where NF = √
det F is a normalization constant and the real function F(x − y) = F(y − x).

The Gaussian trial wavefunctional (22) was widely used in the Gaussian effective potential
approach [9, 10], specifically to the λφ4-model [10]. Using the completeness relation (11) of
‖ξ〉, we obtain

‖�[",F ]〉 =
∫ [

d2ξ

π

]
�[ξ,", F ]‖ξ〉. (23)

In [25], the authors introduced the ‘entangled Wigner operator’ for two-mode correlated
systems. Here we present its generalization to the CSF in the 〈ξ‖-representation. Such
generalization is necessary in revealing the EPR correlations of field states for the CSF. Let
A stand for an operator which is also a function or functional of the field variables. Then the
Weyl correspondence rule [26] is

A =
∫

[d2γ d2λ]'(γ, λ)A(γ, λ) (24)

where the entangled Wigner operator '(γ, λ) in the 〈ξ‖-representation is

'(γ, λ) ≡ [4]
∫ [

d2ξ

π3

]
‖ − ξ + γ 〉〈ξ + γ ‖e−2i

∫
d3x [ξ∗(x)λ∗(x)+ξ(x)λ(x)]. (25)

Therefore, equation (24) maps, via '(γ, λ), a classical quantity A into a quantum mechanical
operator A.

To show the entanglement of the Gaussian trial wavefunctional (22), we evaluate in the
〈ξ‖-representation its ‘entangled Wigner functional’ from equations (12) and (25):

W�[",F ] = 〈�[",F ]‖'(γ, λ)‖�[",F ]〉

= [4]
∫ [

d2ξ

π3

]
�∗[γ − ξ,", F ]�[γ + ξ,", F ]e−2i

∫
d3x [ξ∗(x)λ∗(x)+ξ(x)λ(x)].

(26)

Substituting equation (22) into (26) yields

W�[",F ](γ, λ) =
[

4

π2

]
exp

{
−

∫ ∫
d3x d3y (4λ∗(x)F−1(x − y)λ(y)

+[γ ∗(x) − " ∗(x)]F(x − y)[γ (y) − "(y)])

}
(27)

where F−1(x − y) is the inverse of F(x − y):∫
d3y F(x − y)F−1(y − x′) = δ(x − x′). (28)
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Making use of the Fourier transformations of λ(x), "(x), γ (x) and

F(x − y) = 1√
V

∑
p

Fpeip·(x−y)

F−1(x − y) = 1√
V

∑
p

F−1
p eip·(x−y)

(29)

with F−1
p = 1/Fp due to equation (28), the Wigner functional W�[",F ](γ, λ) in the momentum

space reads

W�[",F ](γ, λ) =
∏
p

W�["p,Fp](γp, λp)

W�["p,Fp](γp, λp) ≡ 4

π2
e−4|λp|2/Fp−Fp|γp−"p|2 .

(30)

For the purpose of illustration, one can take "p = 0. Then setting Fp/2 = e−µp ,
γp = (αp − β∗

p)/
√

2 and λp = (αp + β∗
p)/

√
2, W�["p,Fp](γp, λp) becomes

W�["p,Fp](γp, λp) = 4

π2
exp[−2(|αp|2 + |βp|2) cosh µp + 2(αpβp + α∗

pβ
∗
p) sinh µp] (31)

which resembles the Wigner function of the two-mode squeezed vacuum state [27, 28].
It was demonstrated recently that the two-mode squeezed vacuum state exhibits striking

quantum nonlocality [28]. This important state can be generated by the nondegenerate
parametric amplifier and used to realize the EPR paradox in the EPR original sense [27].
The squeezed-state entanglement is also essential to the quantum teleportation of continuous
variables [7]. Therefore, one may expect that the field state ‖�[",F ]〉 also possesses EPR
entanglement and quantum nonlocality. The present result also indicates that ‖�[",F ]〉 is
a squeezed state of the self-interacting CSF. The ‘degree’ of EPR entanglement and quantum
nonlocality of the field state depends on the value of F(x − y), which is determined by
minimizing 〈�[",F ]‖H‖�[",F ]〉 [10]; in other words, it depends on the specific model
(e.g. the λφ4-model) one chooses.

To summarize, we have shown the EPR entanglement involved in the Gaussian trial
wavefunctional of the nonlinear model for the CSF with self-interaction. In this paper,
the 〈ξ‖-representation is a useful tool in uncovering the EPR entanglement for the specific
field-theoretical model. So far, the EPR-type experiments mainly rely on the two-
particle entanglement [4]. The EPR entanglement in the field-theoretical case, as we have
demonstrated, is of conceptual importance. This intriguing phenomenon might imply that the
results of measurements on the CSF at two different space points are correlated, even though
the two points are spacelike separated. Interestingly, note also that such quantum nonlocality
associated with the EPR correlations in the variational vacuum state arises here from a local
quantum field theory. Does this imply that the vacuum ‘breaks’ the locality of quantum field
theory in this case, just as it breaks symmetry in the Goldstone–Higgs mechanism? If not, how
do we reconcile the quantum nonlocality stated above with the locality underlying quantum
field theory? It seems that the EPR correlations and quantum nonlocality are more subtle in
quantum field theory than in quantum mechanics and thus deserve further study.
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